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Abstract 

An analysis of the field concept and its description in terms of field variables leads to the 
development of an Interaction Theory of the electromagnetic field with the following 
properties: (1) it is free of self-interaction terms; (2) the point charge model remains a 
viable conceptual element of the theory; (3) radiative reaction is fully accounted for 
within the framework of the theory and is not an ad hoe addition as in conventional 
theory; (4) neither a single charged particle nor a system of interacting charged particles 
radiate to a mathematical sink at infinity. Radiation occurs only between and among the 
interacting particles. Energy and momentum are transferred only between and among the 
particles; (5) conventional conservation laws and forces are generalized; and (6) new 
conservation laws and forces appear. An application to a system of two interacting 
particles reveals in detail the conservation of energy, linear and angular momentum. 
Moreover, an intrinsic angular momentum of constant magnitude--a sort of classical 
helicity--appears. The significance of these results to the further development of electro- 
magnetic theory and quantum theory is briefly discussed. 

1. Introduction 

In  an earlier publication (Schwebel, 1970a), it was shown that  the formula-  
t ion o f  gravitation and electromagnetism as field theories places certain 
constraints on the mathematical  formalism used to represent the physical 
concepts. The aim o f  the present report  is to  develop the previous study by 
concentrat ing on the electromagnetic field. For  those readers already 
familiar with the earlier work,  the extension to the gravitational field or  any 
other field similarly structured will present no difficulties. 

Our  first concern will be an analysis o f  the field concept  and the associated 
field variables. We will find that  such difficulties as the infinite self-energy 
of  a point  charge, self-force, self-acceleration, etc., do not  arise if  the field 
variables are carefully defined. Moreover,  the next section, which contains 
the derivations o f  the conservation laws for  energy and momentum,  will 
show why such self-interaction terms appear  in conventional  theory but  
no t  in the present theory. The following section reviews the mathematical  
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formalism which the present theory requires. It also supplies those solutions 
for the field variables which satisfy the conditions imposed by Interaction 
Theory. The fifth section contains a discussion of a system of interacting 
charged particles. Here our analysis of the field will lead to results such as 
(i) that radiation occurs between and among the particles of the system; 
and (ii) that a single charged particle neither radiates nor stores energy in 
the field but that these events are properties of two or more particles. For 
this reason, we designate the present approach to field theory as an inter- 
action theory. Whereas conventional field theories attribute the experi- 
mental data to one or another constituent in an experiment, Interaction 
Theory stresses the relational aspects of that data. The point-of-view taken 
is that any experimental data is joint property: it is representative of the 
behavior of all the constituents in an experiment and not the particular 
properties of one of them. The sixth section applies the theory to two 
interacting point sources. We see in detail the consequences of the general 
theory and the role that the new conservation laws and forces play in this 
special case. Finally, we discuss the work that remains to be done and the 
significance of what has been done for electromagnetic theory and quantum 
theory. 

2. The Field Concept 

Coulomb's law of force between two static charged particles, ql and q2, 
is expressed by the relation 

=q lq2 r  (2.1) F(ql --> q2) r 3 

in which r = r2 - rl and r = Jr2 - rl ], where r I and r2 are the displacement 
vectors of the charges qi and q2, respectively. The symbol F(ql -+ q2) 
expresses the force exerted on q2 by ql. 

The field concept arises from the observation that the region about one of 
the charges, say qt, can be explored by using the second charge, q2, as a test 
charge. If, at each position of q2 relative to qi, we associate a vector whose 
magnitude and direction is equal to that of the force exerted on q2 by ql, 
then the mapping of the region about ql, obtained by this procedure is said 
to exhibit the field about its source ql. I f  the test charge is a unit charge, then 
the mapping is that of the intensity of the field which is usually symbolized 
by the letter E and, for purposes of brevity, called the electric field. 

The mathematical representation o r e  follows from Coulomb's law and is 

(2.2) E(ql) r3 

where r now denotes the displacement vector of an arbitrary spatial location 
relative to the source of the field q~. The field variable, E(q~), contains an 
explicit reference to its source and, as we see in equation (2.2), does not 
depend on any charge other than its source. It is that property that frees it 
for applicatio n over the entire region or field about ql. 
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We can express Coulomb's  law using the field variable E. Thus, we have 

F(q, ---> q2) = q2 E(ql,q2) 

in which we have written the field variable as E(ql,q2) to indicate that the 
electric field is to be evaluated at the position of q2 relative to its source q~. 

The reason for such a detailed presentation of a standard definition is 
that there is an aspect of  the field concept which has not been fully appreci- 
ated, and consequently not consistently applied. Namely, the definition 
precludes the possibility of  the source q~ of  the field acting both as a source 
and a test charge exploring the field about  that source. Of  course, we can 
use a second charge whose magnitude is equal to q~ as a test charge, but that 
causes no difficulties. What  is being denied is that the source of a field can 
also serve as a test charge for exploring and mapping that field. It  follows 
that we can attach no meaning to the concept of  an electric field acting on 
its source or vice versa. Such interactions as self-force, self-energy or any 
other self-interactions are not physically acceptable; they all represent 
interactions between a source and its own field. 

Unfortunately, mathematical representations of  these undesirable 
entities are possible so that we must devise a notation which excludes such 
meaningless terms. We achieve this by appending to each field variable a 
superscript which identifies the source of that field and by stipulating that 
any mathematical representation of an interaction between particles must 
bear distinct superscripts. For  example, Coulomb's  law between two charged 
particles, e p and e ~ should be written 

e p e ~ 
F(q --~p) = -)-g- r = ePE q (2.3) 

in which r = r p - r  ~ is the displacement vector between the two charged 
particles and E ~ represents the electric field which is evaluated at the position 
of  the pth particle but whose source is the qth particle. 

We can repeat the same analysis for the magnetic field, almost verbatim, 
except that instead of charged particles we would employ current elements 
for the source terms and replace Coulomb's  law of force between the static 
charges with Ampere 's  law of force between current elements. The same 
need to identify the magnetic field variable, H, with its source arises and a 
similar notation to that used for the electric field must be employed. 

These alterations in notation brought about  by the analysis of  the field 
variable play no essential role when we turn to the task of  establishing 
Maxwell's electromagnetic equations within the context of  Interaction 
Theory. We follow the same procedure as in conventional theory and 
obtain the set of  equations: 

V . E  p = 47rp p, (c = 1) (2.4a) 

V . H "  = 0, (e = 1) (2.4b) 

V x g p + IzF' -- O, (e = 1) (2.4c) 

V x H" - I~" = 47rj", (c = 1) (2.4d) 
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These equations, though similar in form to Maxwell's equations, differ 
from them more significantly than the slight change in notation would seem 
to indicate. First, if the source (f , jP)  is absent then there can be no corres- 
ponding field variables (E p, HP), and vice versa. It follows that solutions to 
the homogeneous equations, which are mathematically possible, are not 
physically meaningful. They would represent field variables which had no 
source in contradiction to the definition of a field variable. The mathematical 
problem of determining the physically meaningful solution to Maxwell's 
equations has been solved (Schwebel, 1970b). We will need the results for 
what follows, but for the details the original article should be consulted. 

Secondly, the necessity of labeling each field variable with its source 
means that there is a set of equations for each source. The significance of 
this will become apparent when we turn to the derivation of the conservation 
laws and the equations of motion for any number of interacting charged 
particles. 

Finally, Maxwell's equations [equations (2.4a)-(2.4d)], as a set which 
determines the field variables, (E p, HP), in terms of the source, (pP, jP), and 
vice versa, are tautological. They are without physical content. Their 
function is a purely mathematical one of formulating a field description to 
replace an equivalent particle (source) description, or vice versa. Only when 
Maxwell's equations are coupled to Newton's laws of motion do we obtain 
a system of equations with physical content. A consequence of the tauto- 
logical nature of Maxwell's equations is that the wave-particle dualism 
which plays so prominent a part in modern physics is seen to be the result of 
using two distinct, but equivalent, mathematical representations for the 
same physical entity. In other words, the right-hand sides of equations 
(2.4a)-(2.4d) are in terms of a particulate representation for the source of 
the electromagnetic field, whereas the left-hand sides are an equivalent 
formulation in terms of field variables. 

We now turn to the derivation of conservation laws and equations of 
motion to illustrate and support the conclusion drawn from the form of 
Maxwell's equations in Interaction Theory. 

3. Conservation Laws 

The derivation of the conservation laws is almost identical in procedure 
to that used in conventional theory. The difference lies in the care that must 
be taken to ensure that a source is not acted upon by its own field. To derive 
the conservation of energy relation, we scalar multiply equation (2.4c) with 
H ~. To this result, we add the equation obtained by interchanging p and q, 
to find 

0t(HP.H q) + H%V • E r + HP.V x E q = 0 

Next, we scalar multiply equation (2.4d) with E q, interchange p and q and 
then add the two results together. This yields 

0t(EP.E ~) - Eq.V • H p - EP.V x H ~ = -4~r(jP.E~ + j%E p) 
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Finally, adding the above equations, we have the conservation relation 

0,(EP.Ea + HP.H~) + V.(EP x H~ + E~ • H 0  =-4~r(jP.E~ + j%E0 (3.1) 

Note, that if we dispense with the superscripts p and q, we obtain the result 
of conventional theory. As in that theory, we identify the energy density, w, 
with the expression 

w = 4~(EP.E ~ + HP.H q) (3.2) 

and the Poynting vector, S, with 

= 4~(E p X H ~ + E ~ x H 0 (3.3) S 

The above relations were established for two interacting charged particles, 
but it can be extended without any difficulty to any number of interacting 
charged particles. 

y. (3.4/ 
p~-q 

The summations are extended over all particles p and q, except p 4= q. 
Observe that equations (3.2) and (3.4) require a minimal system of two 

interacting charges to give physical meaning to the quantities related. Thus, 
in Interaction Theory, a single charged particle can neither radiate nor 
store energy in the field. These quantities only appear when two or more 
charged particles interact. 

Consider the total energy in the field of two static charges, q~ and q2, 
that are separated by a distance d. In this case, 

Ep = ql(r - rl). E~ = qE(r - rE) 
l r - - r l l  3 '  [r--rg[ 3 

where rl + d = r2. Of course, H p = H q = 0. An elementary calculation 
yields 

1 ~ d~.E~.Ea ql q2 
47r .1 d 

Conventional theory, on the other hand, calculates the integral 

~--~ f d-r(E'2 + E~2 + 2E~'.E ") 

The first two terms in the integrand are the self-energT contributions which, 
on integration, are infinite. The last term in the integrand is the term we 
evaluated above, and the only term which Interaction Theory gives. 

It is clear why conventional theory requires a 'subtraction' procedure in 
order to make it 'work.' The failure to recognize the constraints imposed on 
a field variable has led to the inadvertent introduction of physically meaning- 
less terms by the mathematical formalism of conventional theory. 

5 
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It will prove convenient for what follows to write Maxwell's equations 
[(2.4a)-(2.4d)] in well-known tensor notation. 

OuFW(p) = 4zrJ~(p) (3.5a) 

a t.F~a~(p) = 0 (3.5b) 

Another useful representation is in terms of  the dual of F ", i.e., /~w__- 
�89 

OuP""(p ) = 0 (c = 1) 

0 [t~Pvh](p) = 4"rr%v,~O,]'O(p ) (C = 1) 

For purposes of  reference, we have 

0 -Ex -E ,  -E~ ) 
F.~= E~ 0 -H~ H~ 

E, H~ 0 -H~ 
E~ - g ,  H~ 0 

F ~ = _F~. 

( o: 
0 -Hx --Hy 

p~.= Hx 0 E~ -E, 
H, -E. 0 
n~ E, -Ex 

(3.6a) 

(3.6b) 

The metric tensor gU~ is taken to be 

/1 ) 

g~V = -1  
-1  

and x ~ = (x~ 3) = (t,x,y,z). In order to obtain a simple notation, 
we have omitted displaying the dependence of the field variables on the 
space and time coordinates. Instead, we have used that position to designate 
the source of  the field variable. 

We now proceed to derive the conservation laws in accordance with 
Interaction Theory. Not  only will we derive a generalization of  such laws 
as found in conventional theory, but we will obtain new ones which have no 
counterpart in that theory. 

From equation (3.5a), we obtain 

Fa~(q) auF~ ~(p) = 4zrFa~(q)J~(P) 
which can be rewritten 

O u{Fa~(q ) F ~ ~(p)} - FU~(p) O ~Fa~(q) = 47rFa~(q)J~(P) 
Using equation (3.5b), we find, after some regrouping and the use of  
equation (3.5a), 

Ou(FV"(P) Fa,(q) - �89 ~ aF"/~(p) F~,~(q)} - �89 OaFU ~(p) = 4zrra~(q)J "(p) 

with E ~'~p the well-known antisymmetric unit pseudotensor with e0123 = +1. 
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Next, interchange p and q in the above and add the resulting equation to it. 
In this way we obtain the first of the conservation laws. 

a.{F" ~(p) F~(q) + F" ~(q) F~(p) - �89 ~F~(p)  F~(q)} 

= 4rr(Fav(q)JV(p) + Fav(p)JV(q)} (3.7) 

It is a simple matter to verify that the equation for )~ = 0 is equation (3.1). 
The equations for )~ = 1, 2, 3 yield the conservation laws for the momenta 
densities which reduce to those found in conventional theory (Heitler, 1954) 
if the distinction imposed by p and q is removed. 

If  we start with equation (3.6b), we can form the relation 

F u ~(q) 0 t u/~val(p) = 4rr%~a0 JO(p) F"~(q) = 8~rFa0(q ) JP(p) 
Or, 

rt*~(q){OuP~a(p) + 0.PA.(p) + 0a/;~..(p)} 

= O.{F" ~(q)hA(P)} + O.{F""(q)PA.(P)} + Oa{F*"(q)P..(P)} 

-- -P~A(P) o.r*'~(q) -- fla.(P) 0~ r"v(q) - F.~(p) oar"v(q) = 8rrtao(q)JP(p ) 

Whence, using equation (3.5a), 

o .{r"~(q) hA(P) + F""(P) F.A(q) + �89 AF=~(q) P=t3(P) } 
= 4rr(FAp(q)JO(p ) - FAt,(p)JO(q)} (3.8) 

In the above, we used the relation that 

F..(p) OAF""(q) = P~' ~(p) OaF..(q) = PU~(p){--OuF~a(q) -- O.FA~,(q)} 
= -0.{Ft"(p)  F~a(q)} -- 0.{/~""(p) rA~,(q)} 

= -20~,{F""(.p) FvA(q)} 

The second step is a consequence of equation (3.6a). 
The conservation laws expressed by equation (3.8) are dependent on the 

constraint that the p, q notation imposes. For, if this distinction is removed 
each term vanishes identically; the right-hand side obviously does and we 
can prove that it is so for the left-hand side. 

Consider, 

r""(q) P~A(P) = �89 ~ ff ~,~(q) �89 , F ~'r(p) 
= - �89 aP~t3(q)F~'13(p) + PA.(q)F""(p) 

The last line results from the evaluation of the product of the pseudo- 
tensors. In the same way, we can establish that 

P"~(p) F~A(q ) = -- �89 AF~(P) ff~,[3(q) + FA~(p) f t .  ~(q) 

With these relations, we can write equation (3.8) 

O.(FU~(q)/r - F~ ~(P)/~a(q) + P" ~(P)F~a(q) - P~ V(q)F~A(p)} 
= 8rr{ffAo(q)JP(p ) - PAp(p)Jp(q)} (3.9) 

In this form, it is apparent that when p = q each term vanishes identically. 
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Although the conservation laws have been derived for two interacting 
sources, their extension to any number of interacting sources follows 
immediately. 

Conventional electromagnetic theory designates equations (3.7), (3.8) 
and (3.9) as conservation laws. Interaction Theory, although it can reproduce 
the analogous relations which accepted theory develops, leads to a more 
profound interpretation. Because Maxwell's equations are tautologies, 
equations (3.7), (3.8) and (3.9), which are purely mathematical consequences 
from them, are likewise tautological. The left-hand sides of these equations 
are the equivalent field representations of their right-hand sides. Specifically, 
equation (3.1) is one such relation for two interacting sources. (We could 
consider the more general case of n interacting particles, but the essentials 
are unaltered and the mathematics is only changed by a summation sign.) 
For point sources, the right-hand side of equation (3.1) when integrated 
over all space represents the energy per unit time which particle q expends 
on p added to that which particle p expends on q. The left-hand side of this 
equation expresses precisely the same physical content, but described in 
terms of the appropriate field variables. We will show below that the diver- 
gence term integrated over all space vanishes, so that we are left with the 
contribution from the remaining term which is the rate-of-change of the 
energy as expressed in terms of the appropriate field variables. We can say 
more, but before doing so we must review the solutions for the field variables 
which satisfy the conditions imposed by Interaction Theory. 

4. Solut ions f o r  the Field  Variables 

The equations which must be solved to determine the field variables 
follow from equations (3.5a) and (3.5b). From equation (3.5b), we form 

0 t~ 0 t,F~al = 0 = O~'{O,F~a + OrEad, + OaF~v} 

or, using equation (3.5a), we have 

D F ,  a - 0~' O~,F,a = 4~r{0,Ja - OaJ,} (4.1) 

Interaction Theory requires that the absence of a source implies the 
absence of the corresponding field variable. It follows that in equation (4.1), 
if the right-hand side of the equation is zero for all space-time, i.e., no source 
is present, then F,a must be identically zero. In order that this be the case, 
we must require that the inverse of the D'Alembertian, D -z, exists. 

The mathematical solution to this problem has been given (Schwebel, 
1970b). It was shown that if 

D~h(r, t) = g(r, t)  

then the solution we seek is given by 

~b(r, t) = ~ { H ( t  - R)  g(r', t - R) 

+ H ( - t  - R)g(r', t + R)}, (e = 1) 
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with R = I r  - r ' l  representing the distance between the field point r and that 
portion of the source located at r'. The Heaviside function is defined by 

H(t) = 1, (t > O) 
=0, (t<0) 

The significance of this result for us is that for It] < R, the field variable, 
~b(r, t), vanishes. Therefore, for a system of  interacting particles at some time 
t, it is clearly possible to enclose the entire system within a surface on which 
and external to which the field variables vanish. Evidently, there is no 
transfer of radiation through such a surface. This result justifies the state- 
ment made at the close of the last section. 

We can apply the above result to the 'conservation laws' [equations (3.7), 
(3.8) and (3.9)], for any number of interacting sources. The right-hand sides 
of these equations describe the interactions among the various sources at 
those sources. It follows that the left-hand side of these equations describes 
precisely the same physical events, although with a different set of  variables. 
Consequently, there can be no losses or radiation from such a system to 
some mathematical sink at infinity--the surface over which and external to 
which the field variables vanish assures us of this. Radiation occurs between 
and among interacting sources--it will leave a system provided there are 
interacting sources outside that system. 

5. Equations of Motion 
The interpretation given to the left-hand side of  equation (3.7) depends 

on the role it plays in Newton's equations of motion. In standard notation, 
these are 

dpa(q)  = k~,a f d%{Fa~(k)J~(q)} (5.1) 

in which the integration is over a volume element which contains only the 
point source q and the summation is over all the other sources with which 
it interacts. 

I f  we integrate equation (3.7) over the volume d'rq and use the result in 
the above equation, we obtain 

1 [ d'rq Ot(F'"(k)Fa,(q ) + Fl'(q)Fav(k) - �89 'F~(k)F~(q)} (5.2) = 

k * q  '~ 

with l = 1, 2, 3. According to Interaction Theory and the mathematical 
procedure pursued, we have replaced equation (5.1) by an equivalent one 
in which field quantities are exhibited, and the role they play can be identified. 
Thus, the term containing the integral on the left can, in obvious imitation 
of  its relation to the mechanical four-momentum, be called the momentum 
associated with the field and its integrand defined to be the density of  the 
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field momentum in the neighborhood of the source q. The integral of the 
term on the right is clearly a divergence of a quantity which can readily be 
compared to the flow of the four-momentum density through the surface 
surrounding the source q. The latter does not vanish in this instance, because 
the surface does not enclose all the interacting sources. What is being 
represented in the neighborhood of the source q is the four-momentum 
delivered to or removed from it by the other interacting sources plus that 
portion of it that is in the process of being transferred to or from that region 
through the surface surrounding the source q. In fact, we get a detailed 
picture of what the field is doing in the neighborhood of a source; a mathe- 
matical representation of Faraday's notions about the region surrounding 
a charged source. We see that radiation of energy and momentum from a 
source is to or from other sources which interact with it. 

What occurs in the absence of other interacting systems can be deter- 
mined from equation (5.1) as well. Let us sum that equation over all the 
interacting sources. 

ddt ~ P~(q) = ~ k,q ~ f d%{F~(k)J~(q)} (5.3a) 

= ~ k~,qf dr{Fa~(k)J~(q)} (5.3b) 

1~ k~,~f d.~{Fa,(k)J.(q) + Fa,(q)J~(k)} (5.3c) 

In the second equation, we have replaced the volumes of integration drq 
about each source with a volume dr over all space. This can be done because 
the sources are point charges. The third equation is merely an obvious 
symmetrization, which is possible because the summation is over all the 
sources. 

If  we sum equation (3.7) over all the interacting sources in the system and 
integrate the result over all of  space, then the mathematical results given 
in section four show that there are no losses over the surface of the enclosing 
volume; i.e., no losses to some mathematical sink at infinity. Thus, the 
right-hand side of equation (5.3c) is related directly to the time component 
of equation (3.7) and we obtain a conservation law: 

d Pa(q)-- ~ ~a k~,, I f dr{F~ + F~ 
q 

~ F~/3(q)}[ = 0 (5.4) 

This relation is the mathematical form of the statement that the complete 
system of interacting sources does not radiate to some mathematical sink at 
infinity. If  there were sources outside the system with which the latter 
interacts, then equation (5.2) summed over that system or over the outside 
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sources would be applicable. I f  such were the case, then radiation would 
occur between those sources and the system. 

Herein lies a major difference between Interaction Theory and conven- 
tional Maxwell Theory. In the latter, a system radiates and, in general, 
loses energy. In order to account for this loss, the concept of radiative 
reaction is introduced. The difficulties and complications that arise as a 
consequence of this notion are too well known to need detailed exposition 
here. The source of these problems stems from the evaluation of Poynting's 
vector for the self-interaction between a source and its field variables 
(Heitler, 1954). Interaction Theory does not contain such quantities, but 
it does retain that aspect of radiative reaction which is physically sound, 
In Interaction Theory, if there is radiation it occurs between or among the 
interacting sources of the system. Consequently, the motion of the sources 
is changed, and that is specifically what is meant by radiative reaction. For, 
as we have seen, it is the motion of the sources which reveals the physical 
behavior of  the system. 

So far we have dealt with equation (3.7) which has a counterpart in 
conventional theory. What can be said about equation (3.8) where no 
similar connection can be exploited ? 

The answer has been sought by exploring the effect of the dual terms in 
similar mechanical problems. In an earlier article (Schwebel, 1971), it was 
shown that if we treat the dual of the Lorentz-force term, i.e., the terms on 
the right-hand side of  equation (3.8), as additional forces on the sources, 
then we obtain the same result for the orbit of  one particle gravitating about 
another, as given by the General Theory of Relativity. In the light of  this 
result, a tentative proposal for interpreting equation (3.8) is to form a 
linear combination with equation (3.7) and treat the augmented 'conserva- 
tion equation' as we have equation (3.7). Since all the operators are linear, 
there are no essential difficulties in following through such a procedure. 
We will not pursue the general theory further but apply the results we have 
obtained to an analysis of the interaction between two charged point 
sources. The treatment by conventional theories of this problem has led 
to well-known complications, and we wilt consider the resolution of these 
difficulties as given by Interaction Theory. 

6. Two-Body Problem 
The system under study is to consist of two interacting particles with 

charges e p and e q, respectively. From a relational mechanics point of view 
(Schwebel, 1970c) one of the particles, say the pth, is the fiducial system for 
the position and momentum of the qth particle. The equations of motion 
are, from equation (5.1), 

dp(q)  = e~E p - v ~ x E p, (c = 1) (6.1a) Ae q 

d o  ~ p  (q)= e~ v~.EP, (c = 1) (6.1b) 
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We have used the fact that the qth particle is moving in the static field of  the 
pth particle, i.e., v r = 0 and H p = 0. 

Employing the relativistic values for p and pO, setting 

e p 

and letting/z be the reduced mass, in accordance with relational mechanics, 
the above equations become 

d /.~ 
(6.2b) 

since v = (d/dO r. 
The last equation integrates to yield 

Iz e p e q 
(1 - v2) In + - - r  = E = constant (6.3) 

with E representing the total energy of the system. 
If we take the cross-product of equation (6.2a) with r and simplify, we 

obtain on integration the relation 

/~r •  r 
(1 - v 2 )  1/2 "~- 2tep eq- r = L = constant (6.4) 

which states that the total angular momentum of the system is constant. 
The contribution of the dual force to the total energy of the system 

appears in the calculation of the magnitude of the velocity. However, its 
contribution to the angular momentum is much more significant. We find 
that it gives rise to an intrinsic angular momentum of  constant magnitude 
and in a direction which lies along the displacement vector of the two 
interacting charged particles--a sort of helicity of classical origin. 

Equations (6.3) and (6.4) can be solved for the trajectory of one of the 
particles about the other. In fact, the procedure and solution are essentially 
the same as that obtained for two particles interacting with one another 
through the gravitational field (Schwebel, 1971). The mathematical details 
of such a derivation is of minor interest at the moment. What is important 
is that Interaction Theory, in contradistinction to conventional Maxwell 
theory, concludes that a system of two or more charges is stable; there is no 
loss of either energy or angular momentum from such a system. Moreover, 
a heretofore exclusive property of quantum theory, spin, is seen to be an 
integral property of  a classical theory. Note also that linear momentum is 
also conserved, since this must be the case in the formulation of Newton's 
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laws of motion in accordance with relational mechanics (Schwebel, 
1970c). 

7. Discussion 

A critical analysis of the concept of field and its description in terms of field 
variables has led in a natural way to the elimination of such concepts as 
self-energy, self-force or self-interactions of any type. We have explicitly 
shown in the case of the self-energy of a point charge how conventional 
theory leads to infinite values and why such unacceptable concepts and 
results appear. 

The changes that our analysis makes in conventional theory leads to the 
formulation of an Interaction Theory which does not contain these un- 
physical consequences and concepts. In the new theory, the charged particle 
concept or, if one prefers, the point charge model, remains a viable con- 
ceptual element in electromagnetic theory. There are generalizations of the 
conservation laws and forces of conventional theory and also new conserva- 
tion laws and forces which have no counterpart in that theory. Radiative 
reaction which is an ad hoc addition to conventional theory is an essential 
part of the present theory. It is shown that radiation occurs between and 
among the interacting systems, and determines the motion of the sources. 
It is the latter's response which is the reaction to radiation. 

Besides the general analysis of an arbitrary system of interacting sources, 
a specific application of the theory to two interacting particles was presented. 
We were able to show in detail for this simplest of interacting systems, that 
energy and angular momentum are conserved. In particular, the existence 
of an intrinsic angular moment of constant magnitude--a sort of classical 
helicity--was revealed. What, heretofore, was considered to be specific 
to quantum theory arises within a classical context. 

The last result raises the question of the quantum mechanical aspects of 
the new conservation laws and forces, indeed, of Interaction Theory itself. 
Some work along these lines has been done and will be submitted for 
publication. 

For classical electromagnetic theory, Interaction Theory presents new 
insight into some old and perplexing problems. Conventional theory holds 
it to be impossible to formulate a Lagrangian for a system of interacting 
charged particles. The basis for this contention is the independence of the 
field; it has its own set of variables and exists independently of its source. 
There is no such field-particle dualism in Interaction Theory. The field and 
particle descriptions are merely two different mathematical models of the 
same physical entity. Consequently, there is no difficulty in constructing a 
Lagrangian formalism for interacting sources, and that possibility is 
significant as well for quantum mechanics and quantum field theory. 

Two other consequences of similar importance follow from Interaction 
Theory. First, gauge transformations are not admissible, for they imply 
the presence of field variables in the absence of sources. Secondly, the 
mathematical formalism required by the theory provides a unique, well- 
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defined propagator  for electromagnetic interactions. The impact  of  these 
conclusions on quan tum electrodynamics and field theory in general will be 
the subject o f  future publications. 
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